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;The probability that a random graph with » vertices and cnlogn edges contains a
Hamiltonian circuit tends to 1 as n — = (if ¢ is sufficiently large).

By a graph we mean a graph without loops and multiple edges. We de-
note by (p, q) the edge between the vertices p and g. The edges (py, p2),
(P2, P3)s s (Pp_1, Pn) form a path if p; # p;. We denote this path by
U(p,., pg, e p,,) By the length of a path we mean the number of its ed-
ges. -

The edges (P1, 205 (P2.P3)s oos (D1, Pp)s Py, py) form a circuit if
DiFDj. ‘and n > 3. By the length of a circuit we mean the number of its
edges. |
A path (respectively a circuit) is iu a graph G if every edge of the path
(urcmt) occurs in G.
We call a path passing through every vertex (i.e., having the length
.n—1) a Hamiltonian line, a circuit passing through every vertex (i.e.
having the length n) a Hamiltonian circuil.
One more notation: | X| denotes the number of elements of the set X.
Erdos and Rényi raised the following problem: For what function
(@) does the probability that a random graph with 7 vertices and [ (n) T
edges contams a Hamiltonian circuit tend to 1 asn - =? .
Erdos and Rényi showed that f(n) = inlog nguarantees neither the
_ ) connectivity of the graph, nor the exlstence of a 1-factor, with probabili-
ty tending to 1. (We do not define these notions because we shall not
need them It is enough to know that if a graph G contains a Hamiitonian
circuit, then G is connected and — in the case of an even number of
points — contains alsc a 1-factor.)
The best result in the other direction 1§ due to Komlos and Szemerédi
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[3]. They pointed out that f(n) = cneV1°87 edges already guarantee the
existence of a Hamiltonian circuit with probability tending to 1.

In this paper, we shall show that, for a sufficiciitly large ¢, as few as
cnlogn suffice.

Let G be an arbitrary graph, and let U(x,, x,, ..., X; ) be a path of
maximum length in G. If G contains the edge (x,, x;) (1 <j < k), then,
of course, G contains the path UfX; ), x;_,, ..., X1, X;, Xj1q, ... Xg), too.
U’ consists of the same vertices a8:&&/and fmthermore, has one end
point (x; ) in common with U. We call the transformation U -+ U’ just
described an allowable transformation. We may perform allowable trans-
formations several times successively (U - U’, U' - U", etc.), but we
have to be careful that x; always remains an end point, i.e., only the
other end point may be changed. Let us consider the set H of the “other
end points™ of the paths constructed in this way. x; , the “other end
point” of the path U with which we started, is also an element of .

Let us consider the original path U(x,, x5, ..., x;). Let the set X con- -
sist of those vertices, differing from x;, which do not belong to H and
which are not even adjacent on the path U to a point belonging to H. (x;
is adjacent to x,*l and xj, on the path U.) Thus all points of G not oc-

curring in U are elements of X.
e — L —— —— -

Lemma 1. A vertex of H and a vertex of X cannot be joined by an edge.

Proof. @Q\'A point p of H and a point ¢ not occurring in U cannot be
joined by an edge. In fact, because p is in /, we can form a path u*
having p and x; as end points by means of allowable transformations.
By adding the edge (p, ¢) to U*, we would ¢btain a path in G that is
longer than U, and this is impossible.

(2);Assume that the vertices x; and x; are joined by an edge, and
X, €H, x;e X (1 <i<k,1<j<k) By the definition of H, there exists
a path Ui(r,, .y Xj, 2.y Xz ) Which can be obtained from U by means of
allowable transfmmatmn:;

If the vertices adjacent to X; in U™ are the same as in U, then the new
end point of the path U™ that can be formed from U* with the aid of
the edge (x;, x;) will be adjacent to x; on U* and hence on U. Thus x; is
adjacent to some element of A, which is impossible, since x; e X.

But if the vertices adjacent to x; in U* are not the same as in U, then
this means that one of the edges (\' v;_1) and (Cxj, Xx;4;) must have been
erased during one of the transformatlons which lcd from U to U*. But
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wihen we erase an edge, one of its vertices becomes the new end point

of the path (For instance, we get the path Uy (¥;_1, Yi— 25 - V1, Vi Visls
s Yr—1s xk) from U;(¥y, Y25 o5 Y15 %K) with the aid of (yy, »;)- Here
we erased from U, only the edge (¥;_1, ¥;) and, indeed, y;_; has become
tﬂe new end point.) We have shown, therefore, that one of the points
Fiis Xp x] +1 belongb to H. But this is impossible, since x; € X. This proves

Temma 1.

b

R@ we assume that the number of the vertlces of G isn and
[H1=p, then |[X|=>n —3p.

—(N ow we pass on to the examination of random graphs.

Lemma 2. Assume that the edges of the graph G with n vertices are drawn
in, mutually independently, with probability (clog m)/n.{(In other words,
wle consider n vertices, and we join the pairs of vertices by an edge, P
mutually independently, with probability (clogn)/n. We denqQte the graph
that arises m this way — and thus depends on chance — by G. If ¢ is suf-

ficiently Zarge then the probability that, for some p < }n, there existsa .
set A of p vertices and a set B — disjoint from A — of n — 3p — 1 vertices
stich that no edge joins a vertex of A to a vertex of B, tends to 0 as

n|—+ o,

i

P{-oof. The probability iﬁ question can be estimated from abowe as fol-

- lqws: .
2_%( )( n ) (1' £logn)P(N—3p—1)<
p=1\p/\n—3p—1 n =
L A 4]
L < E pip+l e(*CIOgH)P(H 3p-Din Z} 4p+1— CP/S%O
(\/ el have emplo /_E:__ij\_‘> in and ¢ > 30.)
AM—//\

Theorem 1. Assume that the edges of the graph G with n vertices are
drawn in mutu[zlly independently with probability (¢ logn)/n. Then, for
a J:ufﬁczem‘ly large c, the probability that G contains a Hamzltoman line

tands to 1 asn — oo,

P{oof. (Dué to L. Lovdsz). Let us introduce notations for the following
ents. :

e
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K: For some p < 1n, there exists a set A of p vertices and a set B —
disjoint from 4 — of n — 3p — 1 vertices, such that no edge joins a ve-
tex of A to a vertex of B. :

L(x): Any path of maximum length in G passes through x. (x is an
arbitrary vertex of G.) '

M: G contains a Hamiltonian line.

A denotes the complement of the event 4.

We shall deal with the estimation of P(Z(x)), where x is a fixed vertex
of G. Let us denote by G(x! the graph with n — 1 vertices obtained from

G by erasing x.

-LGx): A path of maximum length in G.

“Let us choose arbitrarily one of the paths of maximum length in G(x)

Denoting this path by U, we define the sets # and X in G(x) (D) (see

, Lemma 1.)

We consider two cases.

(D I1H| < 4n
2 1H| > in.
The first case involves the occurrence of the event K, since | H| = P,
2=, X121 = 1 3p: (The number of vertices of GL)Is equal to
n—1.)

In the second case, the occurrence of L(x) would imply that x could
not be joined in G with any element of H (otherwise, by the definition -
of H, some path U™* that is obtainable from U could be elongated by x).
The probability of this is

< '(1 ——-‘:ﬁ)—g—-n)n/4 e(n/4)(~clogn/n) ____”_0/4.
)¢/ ]

(Since the definition of A depends only on G(x) and U, the situation of
the edges between x and G(x) is independent of the choice of H.)
Consequently, P(L(x)and K) < n~¢* Hence

P (there exists an x such that L(x);and B)< nl~ c/4

By'virtue of Lemma 2, P(K) > 0 (n - =) for a sufficiently large ¢, thus

P(there exists an x such that L(x))< n! —¢/4 + P(K)~0,

i.e.

P{for every x, L(x)) > 1.
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ThlS means that, with probability tending to 1, every.path of maxi-
mum length in ‘G passes through all points of G. Thus Theorem 1 is

proved.

In the following, let ¢ denote a number for which the conclusions of
Theorem 1 and Lemma 2 hold. ‘

Theorem 2. Suppose that the edges of the graph G with n vertices are
drawn in, mutually independently, with probability (c,logn)/n. Then,
for a sufficiently large ¢y, the probability that G contains a Hamilionian
cz'rcuiz‘ tendstol asn— o,

Proof. Let us consider n vertices and construct two random graphs G,
and G, on them, such that a pair of vertices is joined by an edge with
probability (clogn)/n in G, with probability (logn)/n in G,, and all

the events mentioned are independent. Let & be the union of G| and G,
(i.e., the edges of G are the edges occurring in G, or G, ). G itself is also
a random graph in which any two points are joined by an edge, mutually
independently, with probability -

clogn + logn clognlogn
n n n n

ByiTheorem 1, the probability that G; contains a Hamiltonian line
tendslto 1. Counsider (if there is one) a Hamiltonian line U(x;, x5, ..., X},)
in G;. With the aid of U we define the sets H and X (see Lemma 1). We
shall achleve our purpose by dlstmwmshmg the cases |H] < }n and
| H | >‘ in.

If G contains no Hamiltonian circuit, then one out of the following
three events of small probability must occur:

/There is no Hamiltonian line in G .
(U, H defined as above) |H| < in (by Lemmas | and 2, the proba-
b,111/ty\ ‘of this event tends to 0).
(3)‘|H| > in. In this case, x,, cannot be joined by edges in G5 to ele-
s of H. (For, suppose that x,, is joined to an z € H. By the defini-
tlon of H, there exists a path U*, w1th end points x,, and A, Whth can
be obtamed by allowable transformations from U. But U*, together
with the edge (x,, ), is then a Hamiltonian circuit.) The probability
of the event that there is no edge in G, between x,, and the elements of
His <(1 — logn/n)M* - 0,
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Thus the exclusion of these three events with probabilities tending to
0 guarantees the existence of a Hamiltonian circuit. This completes the
proof of Theorem 2 (¢cy =c +1). -

Theorem 3. Let us consider n vertices and place [cyn logn] edges be-
tween them at random. The graph G so arising contains a Hamiltonian
circuit with probability tending to 1. (¢ is a number for which Theorem
2 holds.)

Proof. Let us perform the following experiment. -

We copsider n vertices. We join by an edge every pair of vertices, mu-
tually independently, with probability (¢, logn)/n. G| denotes the result-
ing graph. Now, if the number of edges in G is less than [¢ynlogn],
then we place additional edges in G, at random until the number of ed-
ges is equal to [¢ynlogn]. If the number of edges of 7 is at least
[¢;nlogn], then we have nothing else to do. ’

We denote by G, the graph so constructed (whether identical with G
or not). " -

Let us introduce notations for the following events:

el G, contains a Hamiltonian circuit.
_S: The number of edges of G is less than [cynlogn].

P(S)~> 1 can be easily obtained from the Chebysheff inequality. Also,
it follows from Theorem 2 that P(R) » 1 (since even G contains a Hamil-
tonian circuit with probability tending to 1). Hence P(R|S) > 1. On the
other haind, P(R|S) is just the probability we wanted, that is, the proba-
bility that a random graph with [¢;n logn] edges contains a H amiltonian
circuit. In fact, the graphs G, that arise when S holds have precisely
[c;nlogn] edges, and each one has the same probability.

Thus we have finished the proof of Theorem 3.

1 wish to thank L. Lovdsz for his ingenious simplification of the original
proof of this theorem.
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